
[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [270]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Study of Apache Hadoop
 Uma Patel, Rakesh Patel, Nimita Patel*

*Student,B.E.(IT), Kirodimal Institute of Technology,Raigarh(C.G.),India

Lecturer,Department of Information Technology, Kirodimal Institute of Technology Raigarh(C.G.),India

Student,B.E.(IT), Kirodimal Institute of Technology,Raigarh(C.G.),India

Abstract
Apache Hadoop is an open-source software framework for distributed storage and distributed processing of Big Data

on clusters of commodity hardware. . The settings for the Hadoop environment are crit ical for deriving the full

benefit from the rest of the hardware and software. The Distribution for Apache Hadoop* software includes Apache

Hadoop* and other software components optimized to take advantage of hardware-enhanced performance and

security capabilities.The Apache Hadoop project defines HDFS as “the primary storage system used by Hadoop

applications” that enables reliable ,extremely rapid computations. Its Hadoop Distributed File System (HDFS) splits

files into large blocks (default 64MB or 128MB) and distributes the blocks amongst the nodes in the cluster. Hadoop

uses a distributed user-level filesystem. It takes care of storing data -- and it can handle very large amount of data.

Keywords: Apache hadoop.

 Introduction
Apache Hadoop is an open source software from

Apache Software Foundation. Apache Hadoop, and

Hadoop are trademarks of The Apache Software

Foundation. Used with permission. No endorsement

by The Apache Software Foundation is implied by

the use of these marks we implemented a low-cost,

fully realized big data platform based on the Intel®

Distribution for Apache Hadoop* software. It is an

open source software stack that runs on a cluster of

machines. Hadoop provides distributed storage and

distributed processing for very large data sets. It is an

Apache project released under Apache Open Source

License v2.0.This license is very commercial

friendly. Originally Hadoop was developed and open

sourced by Yahoo. Now Hadoop is developed as an

Apache Software Foundation project and has

numerous contributors from Cloudera, Horton

Works, Facebook, etc. Hadoop is open source. The

software is free. Hadoop runs on a cluster of

machines. The cluster size can be anywhere from 10

nodes to 1000s of nodes. For a large cluster, the

hardware costs will be significant. The cost of IT /

OPS for standing up a large Hadoop cluster and

supporting it will need to be factored in. Since

Hadoop is a newer technology, finding people to

work on this ecosystem is not easy.

 Architecture of hadoop

History
Hadoop was created by Doug Cutting and Mike

Cafarella in 2005. Cutting, who was working

at Yahoo! at the time, named it after his son's toy

elephant. It was originally developed to support

distribution for the Nutch search engine project.

Component of hadoop:

 Hadoop provides two components:-

1. Hadoop Distributed File System (HDFS)

2. MapReduce.

http://www.ijesrt.com/
http://en.wikipedia.org/wiki/Doug_Cutting
http://en.wikipedia.org/wiki/Mike_Cafarella
http://en.wikipedia.org/wiki/Mike_Cafarella
http://en.wikipedia.org/wiki/Yahoo!
http://en.wikipedia.org/wiki/Nutch

[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [271]

Hadoop = HDFS + MapReduce

Hadoop provides two things : Storage &

Compute.storage is provided by Hadoop Distributed

File System (HDFS). Compute is provided by

MapReduce.

It consists of two parts: Hadoop Distributed File

System (HDFS), which is modeled after Google's

GFS, and Hadoop MapReduce, which is modeled

after Google's MapReduce.

Hadoop distributed file system (HDFS)
HDFS is the 'file system' or 'storage layer' of

Hadoop. It takes care of storing data and it can handle

very large amount of data.The Hadoop Distributed

File System (HDFS) is a distributed file system

designed to run oncommodity hardware. It has many

similarities with existing distributed file systems.

HDFS is highly fault-tolerant and is designed to be

deployed on low-cost hardware. HDFS provides

highthrough put access to application data and is

suitable for applications that have large data sets.

The Hadoop Distributed File System (HDFS) is one

of many different components and projects contained

within the community Hadoop™ ecosystem. The

Apache Hadoop project defines.HDFS as: “the

primary storage system used by Hadoop applications.

HDFS creates multiple replicas of data blocks and

distributes them on compute nodes throughout a

cluster to enable reliable, extremely rapid

computations.

HDFS Architecture

HDFS is built using the Java language; any machine

that supports Java can run the NameNode or the

DataNode software. Usage of the highly portable

Java language means that HDFS can be

deployed on a wide range of machines. A typical

deployment has a dedicated machine that

runs only the NameNode software. Each of the other

machines in the cluster runs one

instance of the DataNode software

NameNode and DataNode
The architecture does not preclude running multiple

DataNodes on the same machine but in a real

deployment that is rarely the case. HDFS does not

support hard links or soft links. However, the HDFS

architecture does not preclude implementing these

features. HDFS is implemented by two services: the

NameNode and DataNode.The NameNode maintains

the file system namespace. The NameNode is

responsible for maintaining the HDFS directory tree,

and is a centralized service in the cluster operating on

a single node. Any change to the file system

namespace or its properties is recorded by the

NameNode. An application can specify the number

of replicas of a file that should be maintained by

HDFS. The number of copies of a file is called the

replication factor of that file. This information is

stored by the NameNode. Clients contact the

NameNode in order to perform common filesystem

operations, such as open, close, rename, and delete.

The NameNode does not store HDFS data itself, but

rather maintains a mapping between HDFS file name,

a list of blocks in the file, and the

DataNode(s) on which those blocks are stored.

http://www.ijesrt.com/

[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [272]

The file system namespace
HDFS supports a traditional hierarchical file

organization. A user or an application can create

directories and store files inside these directories. The

file system namespace hierarchy is similar to most

other existing file systems; one can create and

remove files, move a file from one directory to

another, or rename a file. HDFS does not yet

implement user quotas or access permissions. HDFS

does not support hard links or soft links. However,

the HDFS architecture does not preclude

implementing these features. The NameNode

maintains the file system namespace. Any change to

the file system namespace or its properties is

recorded by the NameNode. An application can

specify the number of replicas of a file that should be

maintained by HDFS. The number of copies of a file

is called the replication factor of that file. This

information is stored by the NameNode.

Data replication
HDFS is designed to reliably store very large files

across machines in a large cluster. It stores each file

as a sequence of blocks; all blocks in a file except the

last block are the same size. The blocks of a file are

replicated for fault tolerance. The block size and

replication factor are configurable per file. An

application can specify the number of replicas of a

file. The replication factor can be specified at file

creation time and can be changed later. Files in

HDFS are write-once and have strictly one writer at

any time. The NameNode makes all decisions

regarding replication of blocks. It periodically

receives a Heartbeat and a Blockreport from each of

the DataNodes in the cluster. Receipt of a Heartbeat

implies that the DataNode is functioning properly. A

Blockreport contains a list of all blocks on a

DataNode.

The Benefits of HDFS-

There is little debate that HDFS provides a number of

benefits for those who choose to use it.Below are

some of the most commonly cited.

Built-In Redundancy and Failover-

HDFS supplies out-of-the-box redundancy and

failover capabilities that require little to no manual

intervention (depending on the use case). Having

such features built into the storage layer allows

system administrators and developers to concentrate

on other responsibilities versus having to create

monitoring systems and/or programming routines to

compensate for another set of storage software that

lacks those capabilities. Moreover, with downtime

being a real threat to many modern businesses’

bottom line, features that minimize outages and

contribute to keeping a batch analytic data store up,

operational, and feeding any online system that

requires its input are welcomed by both IT and

business professionals.

Big Data Capable-

The hallmark of HDFS is its ability to tackle big data

use cases and most of the characteristics that

comprise them (data velocity, variety, and volume).

The rate at which HDFS can supply data to the

programming layers of Hadoop equates to faster

batch processing times and quicker answers to

complex analytic questions.

Portability-

Any tenured data professional can relay horror stories

of having to transfer, migrate, and convert huge data

volumes between disparate storage/software vendors.

One benefit of HDFS is its portability between

various Hadoop distributions, which helps minimize

vendor lock-in.

Cost-Effective-

As previously stated, HDFS is open source software,

which translates into real cost savings for its users.

As many companies can attest, high-priced storage

solutions can take a significant bite out of IT budgets

and are many times completely out of reach for small

or startup companies .Other benefits of HDFS exist,

but the four above are the primary reasons why many

users deploy HDFS as their analytic storage solution.

Map Reduce-

Map Reduce takes care of distributed computing. It

reads the data, usually from its storage,A Hadoop

MapReduce job mainly consists of two user-defined

functions: map and reduce. The input of a Hadoop

MapReduce job is a set of key-value pairs (k, v) and

the map function is called for each of these pairs. The

map function produces zero or more intermediate

key-value pairs (k′, v′). Then, the Hadoop

MapReduce framework groups these intermediate

key-value pairs by intermediate key k′ and calls the

reduce function for each group. Finally, the reduce

function produces zero or more aggregated results.

The beauty of Hadoop MapReduce is that users

usually only have to define the map and reduce

functions. The framework takes care of everything

else such as parallelisation and failover. The Hadoop

MapReduce framework utilizes a distributed file

system to read and write its data. Typically, Hadoop

MapReduce uses the Hadoop Distributed File System

http://www.ijesrt.com/

[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [273]

(HDFS), which is the open source counterpart of the

Google File System . Therefore, the I/O performance

of a Hadoop MapReduce job strongly depends on

HDFS.In the MapReduce model, computation is

divided into a map function and a reduce function.

The map function takes a key/value pair and

produces one or more intermediate key/value pairs.

The reduce function then takes these intermediate

key/value pairs and merges all values corresponding

to a single key. The map function can run

independently on each key/value pair, exposing

enormous amounts of parallelism. Similarly, the

reduce function can run independently on each

intermediate key, also exposing significant

parallelism.

MapReduce has Mappers and Reducers

MapReduce splits computation into multiple tasks.

They are called Mappers and Reducers

Mapper

The 'sorter' (the girl asking 'how old are you') only

concerned about sorting people into appropriate

groups (in our case, age). She isn't concerned about

the next step of compute.

In MapReduce parlance the girl is known as

MAPPER.

Reducer:-

Once the participants are sorted into appropriate age

groups, then the guy wearing 'bowtie' just interviews

that particular age group to produce the final result

for that group .There are few subtle things happening

here:

• The result for one age group is not

influenced by the result of other age group.

So they can be processed in parallel.

• we can be certain that each group has all

participants for that group. For example, all

20 something’s are in the group 20s. If the

mapper did her job right, this would be the

case.

• With these assumptions, the guy in bowtie

can produce a result for a particular age

group, independently

The benefits of MapReduce programming:-

 So what are the benefits of MapReduce

programming? As you can see, it summarizes a lot of

the experiences of scientists and practitioners in the

design of distributed processing systems. It resolves

or avoids several complications of distributed

computing. It allows unlimited computations on an

unlimited amount of data. It actually simplifies the

developer's life. And, although it looks deceptively

simple, it is very powerful, with a great number of

sophisticated (and profitable) applications written in

this framework. In the other sections of this book we

will introduce you to the practical aspects of

MapReduce implementation. We will also show you

how to avoid it, by using higher-level tools, 'cause

not everybody likes to write Java code. Then you will

be able to see whether or not Hadoop is for you, or

even invent a new framework. Keep in mind though

that other developers are also busy inventing new

frameworks, so hurry to read more.

Hadoop Customization
A user can customize and optimize a Hadoop

MapReduce job by supplying additional functions

besides just map and reduce. In this section, we

consider whether users are exploiting this feature in

practice.

Job Customization

Most job customizations are related to ways of

partitioning data and aggregating data from earlier

stages:

Combiner: The Combiner performs partial

aggregation during the local sort phase in a map task

and a reduce task. In general, if the application

semantics support it, a combiner is recommended. In

OPENCLOUD, 62% of users have used this

optimization at least once. In M45 and WEB

MINING clusters, 43% and 80% of users have used it

respectively.

Secondary Sort: This function is applied during the

reduce phase. By grouping different reduce keys for a

single reduce call, secondary sort allows users to

implement an optimized join algorithm as well as

other complex operations. In the M45 cluster, no user

applied a secondary sort. In the WEB MINING

cluster, only one user used secondary sort, and that

was through the use of Pig, which implements certain

join algorithms using secondary sort. In

OPENCLOUD, 14% of users have used secondary

sort, perhaps suggesting a higher level of

sophistication or more stringent performance

requirements.

Custom Partitioner: A user can also have full

control over how to redistribute map output to the

reduce tasks using a custom partitioner. In the

OPENCLOUD cluster, as many as 35% of users have

used a custom partitioner. However, only two users

in the M45 cluster and one user in the WEB MINING

cluster applied a custom partitioner.

http://www.ijesrt.com/

[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [274]

Custom Input and Output Format: Hadoop

provides an InputFormat and OutputFormat

framework to simplify handling of custom data

formats and non-native storage systems. In

OPENCLOUD, 27% of users applied a custom input

format at least once and 10% of users applied a

custom output format. In M45, only 4 users applied a

custom input format and only 1 user applied a custom

output format. In WEB MINING, only one user

applied a custom input format and none applied a

custom output format. In general, job customizations

help with performance and thus a visible fraction of

users leverage them, especially the optional

combiners. OPENCLOUD users tend to use more

optimization techniques than users of the other two

clusters. Configuration Tuning Hadoop exposes a

variety of configuration parameters for tuning

performance and reliability. Here we discuss a few

configuration parameters that are typically considered

important for performance and faulttolerance .

Failure Parameters: Users can control how failures

are handled as well as erroneous inputs. In

OPENCLOUD, 7 users explicitly specified a higher

threshold to retry failed tasks, 6 users specified a

higher “skip” to ignore bad input records, and 1 user

specified a higher threshold in the number of

tolerable failed tasks. In M45, 3 users set a higher

threshold in the number of tolerable failed tasks. All

WEB MINING users stayed with cluster default

values.

Java Virtual Machine (JVM) Option: The native

Hadoop MapReduce interface is implemented in

Java. If a map or reduce task requires a large memory

footprint, the programmer must manually adjust the

heap and stack sizes: 29 OPENCLOUD users, 11

M45 users and 3 WEB MINING cluster users have

changed default JVM option for their jobs.

Speculative Execution: Speculative execution is the

default mechanism to handle straggler tasks. Only

two users from OPENCLOUD and M45 have

changed the cluster default value for their

applications. We discuss speculative execution in

detail in Section 6.3.

Sort Parameters: Hadoop runs a merge sort at the

end of the map phase and just before the reduce

phase. There are four parameters that directly related

to those sorts. Two users of WEB MINING cluster

have adjusted io.sort.mb parameter to 200. Only one

user of M45 cluster have adjusted io.sort.mb to 10.

Other than that, all users used the cluster default

values.

HDFS Parameters: The HDFS block size and

replication factor affect the behavior of writing the

final output of a MapReduce job. In OPENCLOUD,

11 users have tried different values for replication

factor. In M45, two users have adjusted block size

and only one user tried a different replication factor.

Other than these, all users kept the cluster default

values. In summary, users tend to tune parameters

directly related to failures. JVM options are used to

prevent “Out of Memory” errors. By talking with

administrators of OPENCLOUD, we learned that

many of their users explicitly tuned these options in

response to poor failure behaviors. In contrast, users

rarely tune parameters related to performance,

perhaps because their performance requirements were

generally being met, or perhaps because these

parameters are more difficult to understand and

manipulate.

Job optimization
One of the major advantages of Hadoop MapReduce

is that it allows non-expert users to easily run

analytical tasks over big data. Hadoop MapReduce

gives users full control on how input data sets are

processed. Users code their queries using Java rather

than SQL. This makes Hadoop MapReduce easy to

use for a larger number of developers: no background

in databases is required; only a basic knowledge in

Java is required. However, Hadoop MapReduce jobs

are far behind parallel databases in their query

processing efficiency. Hadoop MapReduce jobs

achieve decent performance through scaling out to

very large computing clusters. However, this results

in high costs in terms of hardware and power

consumption.Therefore, researchers have carried out

many research works to effectively adapt the query

processing techniques found in parallel

databases to the context of Hadoop MapReduce.

Data layouts and indexes
One of the main performance problems with Hadoop

MapReduce is its physical data organization

including data layouts and indexes.

Data layouts: Hadoop MapReduce jobs often suffer

from a roworiented layout. The disadvantages of row

layouts have been thoroughly researched in the

context of column stores . However, in a distributed

system, a pure column store has severe drawbacks as

the data for different columns may reside on different

nodes leading to high network costs. Thus, whenever

a query references more than one attribute, columns

have to be sent through the network in order to merge

different attributes values into a row (tuple re-

construction). This can significantly decrease the

performance of Hadoop MapReduce jobs. Therefore,

other, more effective data layouts have been

proposed in the literature for Hadoop MapReduce

http://www.ijesrt.com/

[Patel, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [275]

Conclusion
We find that in the three workloads, a majority of

users submitted many small single stage applications

implemented in Java, although the rest of workloads

are highly diverse in application styles and data

processing characteristics. We see underuse of

Hadoop features, extensions and optimization tools.

Our conclusion is that the use of Hadoop for

academic research is still in its adolescence. Easing

the use of Hadoop, and improving system designs

subject to changing use cases are crucial research

directions for future. Data confidentiality through

encryption and decryption performed without a

performance penalty in the storage layer Hadoop

Distributed File System* (HDFS) taking full

advantage of enhancements provided Advanced

Encryption Standard New Instructions .The

MapReduce programming model has been

successfully used at Google for many different

purposes. We attribute this success to several reasons.

References
1. HDFS Java API:

http://hadoop.apache.org/core/docs/current/a

pi/

2. HDFS source code:

http://hadoop.apache.org/core/version_contr

ol.html

3. Apache hadoop.apache.org

[http://hadoop.apache.org]

4. Kai Ren1, YongChul Kwon2, Magdalena

Balazinska2, Bill Howe2 .Hadoop’s

Adolescence: A Comparative Workload

Analysis from Three Research

Clusters(Parallel Data Laboratory

5. Carnegie Mellon UniversityPittsburgh, PA

15213-3890).

6. Hadoop,http://hadoop.apache.org/mapreduc

e/.

7. A. Floratou et al. Column-Oriented Storage

Techniques for MapReduce. PVLDB,

4(7):419–429, 2011.

8. “Hadoop HDFS,” Hadoop.Apache.org:

http://hadoop.apache.org/hdfs/.

http://www.ijesrt.com/

